Linear grouping using orthogonal regression
نویسندگان
چکیده
منابع مشابه
Linear grouping using orthogonal regression
This paper proposes a new method, called linear grouping algorithm (LGA), to detect different linear structures in a data set. LGA is useful for investigating potential linear patterns in datasets, that is, subsets that follow different linear relationships. LGA combines ideas from principal components, clustering methods and resampling algorithms. It can detect several different linear relatio...
متن کاملKernel Density Construction Using Orthogonal Forward Regression
An automatic algorithm is derived for constructing kernel density estimates based on a regression approach that directly optimizes generalization capability. Computational efficiency of the density construction is ensured using an orthogonal forward regression, and the algorithm incrementally minimizes the leave-one-out test score. Local regularization is incorporated into the density construct...
متن کاملIterative selection using orthogonal regression techniques
High dimensional data are nowadays encountered in various branches of science. Variable selection techniques play a key role in analyzing high dimensional data. Generally two approaches for variable selection in the high dimensional data setting are considered — forward selection methods and penalization methods. In the former, variables are introduced in the model one at a time depending on th...
متن کاملGeneralized orthogonal components regression for high dimensional generalized linear models
Here we propose an algorithm, named generalized orthogonal components regression (GOCRE), to explore the relationship between a categorical outcome and a set of massive variables. A set of orthogonal components are sequentially constructed to account for the variation of the categorical outcome, and together build up a generalized linear model (GLM). This algorithm can be considered as an exten...
متن کاملOrthogonal linear regression algorithm based on augmented matrix formulation
Scope and Purpose : In this paper, a new technique for solving a multivariate linear model using the orthogonal least absolute values regression is proposed. The orthogonal least absolute values (ORLAV) regression minimises the sum of the absolute, orthogonal distance from each data point to the resulting regression hyperplane. In a large set of equations where the variables are independent of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2006
ISSN: 0167-9473
DOI: 10.1016/j.csda.2004.11.011