Linear grouping using orthogonal regression

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear grouping using orthogonal regression

This paper proposes a new method, called linear grouping algorithm (LGA), to detect different linear structures in a data set. LGA is useful for investigating potential linear patterns in datasets, that is, subsets that follow different linear relationships. LGA combines ideas from principal components, clustering methods and resampling algorithms. It can detect several different linear relatio...

متن کامل

Kernel Density Construction Using Orthogonal Forward Regression

An automatic algorithm is derived for constructing kernel density estimates based on a regression approach that directly optimizes generalization capability. Computational efficiency of the density construction is ensured using an orthogonal forward regression, and the algorithm incrementally minimizes the leave-one-out test score. Local regularization is incorporated into the density construct...

متن کامل

Iterative selection using orthogonal regression techniques

High dimensional data are nowadays encountered in various branches of science. Variable selection techniques play a key role in analyzing high dimensional data. Generally two approaches for variable selection in the high dimensional data setting are considered — forward selection methods and penalization methods. In the former, variables are introduced in the model one at a time depending on th...

متن کامل

Generalized orthogonal components regression for high dimensional generalized linear models

Here we propose an algorithm, named generalized orthogonal components regression (GOCRE), to explore the relationship between a categorical outcome and a set of massive variables. A set of orthogonal components are sequentially constructed to account for the variation of the categorical outcome, and together build up a generalized linear model (GLM). This algorithm can be considered as an exten...

متن کامل

Orthogonal linear regression algorithm based on augmented matrix formulation

Scope and Purpose : In this paper, a new technique for solving a multivariate linear model using the orthogonal least absolute values regression is proposed. The orthogonal least absolute values (ORLAV) regression minimises the sum of the absolute, orthogonal distance from each data point to the resulting regression hyperplane. In a large set of equations where the variables are independent of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Statistics & Data Analysis

سال: 2006

ISSN: 0167-9473

DOI: 10.1016/j.csda.2004.11.011